Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
image_processing_2 [2016/06/28 09:44]
Emeric Barrier
image_processing_2 [2016/06/28 09:47] (Version actuelle)
Emeric Barrier
Ligne 7: Ligne 7:
 //​Coefficient 1// //​Coefficient 1//
 \\ \\
-This teaching ​aims to acquire the notions and the tools usually used in images ​processing. + 
-\\ \\ +===Lecture goals=== 
-  * Introductionimage, Transformed and descriptors,​ elementary Descriptors +\\ 
-  * Introduction in the problems in medical images ​processing: ​recalibrationoppositeclassificationatlasDICOM formatstorage +This lecture ​aims to provide an introduction to medical image processing ​and associated software aspects
-  * Software: Medipy, FSL, Slicer, Vrender+The value of medical imaging for clinical routine and neuroscience research is also presented. 
-  * Nuclear medicine, imaging MRI: clinical, ​intellectual practicecomas / ageing, memory, cognitive tests + 
-  * Belly imaging, visualization +===Detailed outline=== 
-  * Forms descriptors and 2D transformations ​(Fourier, Hoteling, Hough, Hadamard, KLT, ACP, DCT, etcHistogram and multi-modalities,​ automatic thresholding,​ images binarisation,​ mathematical morphology +\\ 
-  * Filtering and detection of outlines, causality, side effects, 2D filtering, convolution,​ 2D filters with standard finished impulsive answer +  *Introduction ​to medical ​image processing: ​medical imagingregistrationchange detectionsegmentationfMRI... (J.-P. Armspach) 
-  * Filters with infinite impulse answer, optimal detection ​of outlines in the sense of Canny-Deriche + 
-  * Improvement and restoration of imagesmodels of degradationdeconvolution and function of device +  *Software ​and medical image databases (JLamy) 
-  * Reconstruction and recalibration + 
-  * Classification,​ methods of coalescence ​clustering ​+  *Insight of the radiologist: clinical ​routineneuro-radiologystudy of coma (SKremer) 
-\\ \\ + 
-The course will be directly illustrated by Matlab applicationsthanks to very numerous questions which every student has to answer in alternation with the teaching. This practice allows every student ​to be very quickly confronted with the reality of images processing ​and to acquire knowledge which can be helpful during the intership.+  *Insight ​of the neurologist:​ agingmemorycognitive tests (F. Blanc) 
 + 
 +===Applications=== 
 +\\ 
 +Getting started with a medical image processing software ​(Slicer
 + 
 +===Acquired skills=== 
 +\\ 
 +At the end of the lecture, the student ​will have an overview of the interests ​and issues related ​to medical image processing.
 \\ \\ \\ \\
 [[Version anglaise|Back]] [[Version anglaise|Back]]